

Micromax™ Q95IR

Electronic Inks and Pastes

Imaging Paste

Micromax™ developed dielectric and imaging pastes for use in high density via generation system.

- Micromax™ Q42DR, a silver-compatible, multilayer thick film dielectric composition.
- Micromax™ Q95IR imaging paste, a fugitive thick film via formation.

Both products are phthalate-free, Pb-free and Cadmium-free*.

Micromax™ Q42DR is compatible with Micromax™ QM System of thick film materials for the manufacture of multilayer hybrids and multichip modules.

Product benefits

When integrated with existing thick film processes, the diffusion patterning system incorporates all the advantages of the Micromax™ QM silver multilayer system, as well as the following advantages specific to diffusion patterning:

- High circuit density
- Reduced circuit cost
- Minimum capital investment
- Easily incorporated into thick film processes
- Environmentally safe processing
- Dense, hermetic dielectric
- Cadmium, Lead, Nickel and Phthalate free*

*Cadmium, Lead, Nickel and Phthalate 'free' as used herein means that cadmium, lead, nickel, and phthalate are not intentional ingredients in and are not intentionally added to the referenced product. Trace amounts however may be present.

Rheological properties

Viscosity

45 - 90^[1] Pa.s

[1]: Brookfield RVT, SC4-14/6R, 10 rpm

Application technique

Mask mesh

290 - 400^[2]

Mask emulsion

12^[3] µm

Drying temperature

70 - 100 °C

[2]: Wire Diameter 15-24µm

[3]: base coat to 12µm

Storage and stability

Shelf life

6^[4] months

[4]: in unopened containers, from date of shipment, at normal room temperature

Micromax™ Q95IR

Electronic Inks and Pastes

Additional information

How to use

Processing

• Basic chemistry

- The via forming process utilizing diffusion patterning technology is achieved by a complex acid/base reaction. The image paste, Micromax™ Q95IR, contains complex organic base [OH-]; the dielectric, Micromax™ Q42DR, contains the acidic acrylic polymer [H+]. Regions where both meet are reaction zones, which become water soluble, allowing the vias to be formed. The areas where the dielectric and image paste are not in contact remain water insoluble.

• Handling

- Stir Micromax™ Q42DR and Micromax™ Q95IR thoroughly before each use. To maintain shelf life, do not return used Micromax™ Q42DR or Micromax™ Q95IR to the original container of paste. Also to maintain shelf life, minimize the length of time that the paste is on the screen when the printer is not in operation. To prevent "de-wetting", dry all cleaning solvents off the screen prior to printing.

• Substrates

- Properties are based on tests using 96% alumina substrates. Substrates of other compositions and from various manufacturers may result in variations in performance properties.

• Printing Micromax™ Q42DR

- Recommended screens
 - Mesh 165 - 200
 - Wire diameter 40 - 55µm
 - Emulsion thickness, base coat to 12µm
- Print speed 10 cm/s
- Printing should be carried out in a clean and well ventilated area. For building multilayer hybrids, printing should take place in class 10,000 conditions or better to minimize yield losses from airborne contamination. Print individual layers with the recommended stainless steel screen. The Micromax™ Q42DR screen requires a thinner emulsion to minimize the buildup of dielectric at the edge of the print, while still providing desired overall print thickness.
- Use print/print mode to deposit the dielectric. Allow the wet dielectric print to level for 5-10 minutes. The single dried print thickness is 37µm ±2. Unlike conventional thick film dielectric processes, vias are not created at this step. Therefore, artwork for the dielectric screens does not include via openings.
- Note : It is important to achieve uniform dielectric print thickness to obtain consistent via diameters in the imaging process.

Micromax™ Q95IR

Electronic Inks and Pastes

- **Drying Micromax™ Q42DR**

- Dry in air at 85-90°C for 10 minutes. Drying conditions may vary depending on use of conveyor dryers or box ovens.

- **Printing Micromax™ Q95IR**

- Recommended screens
 - Mesh 290 - 400
 - Wire diameter 15 - 24µm
 - Emulsion thickness, base coat to 12µm
- Print speed 10 cm/s
- Micromax™ Q95IR is screen printed, in the form of dots, directly to the dried Micromax™ Q42DR surface. Use the recommended screen to ensure uniform dot deposits for all vias. Screens for printing Micromax™ Q95IR are selected to maximize the open area, with minimum wire diameter to produce uniform image paste deposits. Print Micromax™ Q95IR with two print strokes in the same direction. Micromax™ Q95IR is the imaging or patterning paste that forms vias, therefore the artwork and screens used to form vias can also be used to fill vias. Also consider that a basecoat emulsion may help improve or increase the via diameters. Knowing the actual measurement of the opening in the screen will help when setting up the process.

- **Diffusing Micromax™ Q95IR**

- Micromax™ Q95IR is diffused into the dielectric by exposures to temperatures of 70 to 100°C (158-212°F). A belt dryer is recommended for volume production runs to insure uniform via size. Diffusing is the most critical step in the diffusion patterning process and uniform heating is required for the vias to be uniform in size and shape. For development, a box oven may be used for diffusing. Typical profiles obtained by attaching a thermocouple to parts on a tray placed into a box oven at several different setpoints. For example, the 80°C setpoint requires approximately 10 minutes to actually reach 80°C. Consider the entire profile when correlating to conveyor belt dryer. All of these box oven profiles result in acceptable diffusion of the Micromax™ Q95IR, however the lower temperatures exhibit the largest process window.
- The smaller the via size, the more precise the time/temperature profile must be.
- These recommended diffusing profiles should be fine-tuned to achieve optimum via resolution for each specific dryer. If vias are not fully formed in the diffusing process, first increase diffusing time. If results are still not sufficient within a viable production process, return to the original time and increase temperature. Increasing temperature narrows the process window between "underdeveloped" and "capped" vias.
- A "capped" via is a dried image dot of Micromax™ Q95IR, that is

Micromax™ Q95IR

Electronic Inks and Pastes

not removed by the development process step. If capped vias are observed, diffusing temperature is too high, diffusing time is too long, or there is excessive airflow in the drying equipment.

- **Developing vias**

- Via developing
 - Water temperature : 35 - 45°C
 - Water pH : 6.5 - 8.5
 - Nozzle pressure : 10 - 25 psi
 - Development time : 8 - 25 s
- Developing completely removes the Micromax™ Q95IR and the soluble Micromax™ Q42DR in order to form vias. It takes place in a conveyorized water spray developer unit. The water temperature is 35-45°C (95-113°F). The water pH is 6.5-8.5. The water pressure is 10-25 psi. The total developing time is 8-25 seconds. Excess water is blown off the circuit after the develop cycle, generally in the same piece of equipment.
- The purchase of a conveyorized water spray developer represents the only investment that may be required beyond what is already found in a thick film hybrid manufacturing facility.
- Developing is environmentally friendly, It is an aqueous process that may be operated in a closed /recycling system to minimize water disposal issues. In the closed loop system, solid waste is captured by 5-microm paper filters and periodically discarded. The waste consists primarily of alumina and inorganic solids from the Micromax™ Q42DR dielectric, and may be disposed of with other no hazardous materials.

- **Firing**

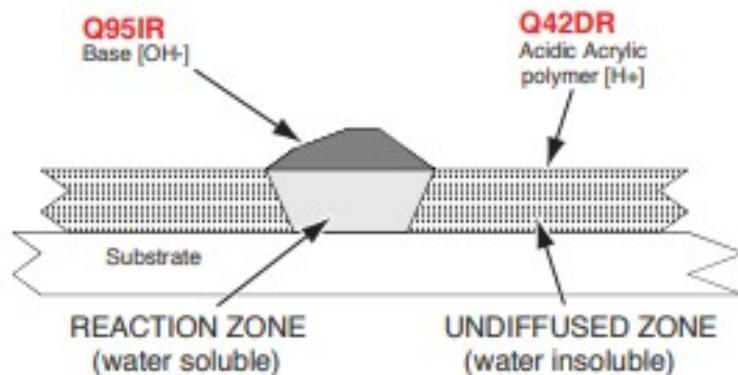
- Fire the Micromax™ Q42DR and other system compositions in air using a standard 30-minute belt furnace profile.

- **Via fill**

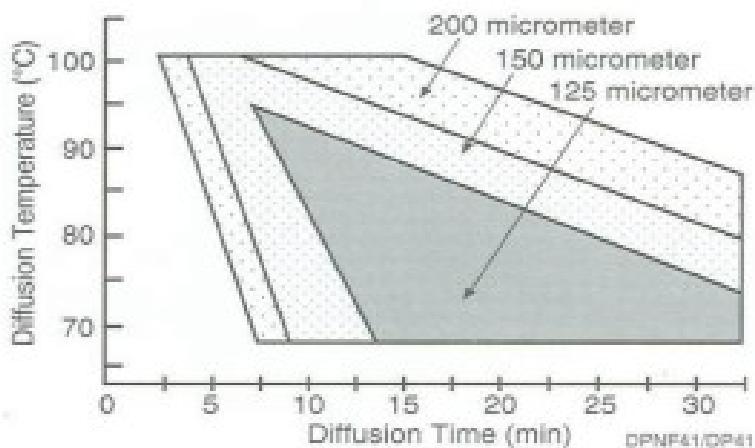
- Use the recommended materials and processes to fill vias. In most circuit designs, the screens used for applying the Micromax™ Q95IR may be used for via filling. Subsequent layers of conductor, dielectric, and via fill are created using the recommended via fill compositions and processes. Repeat the Micromax™ Q42DR and Micromax™ Q95IR process steps to create a second dielectric layer.
- The required separation between conductor layers is achieved in two dielectric print/dry/diffuse/fire cycles. The final fired thickness is 38µm ±2µm.

- **Screen cleaning tip**

- On occasion, the via fill screen can become clogged with Micromax™ Q95IR paste. This can be cleaned using water. Ensure that the screen is completely dried prior to printing again after cleaning.

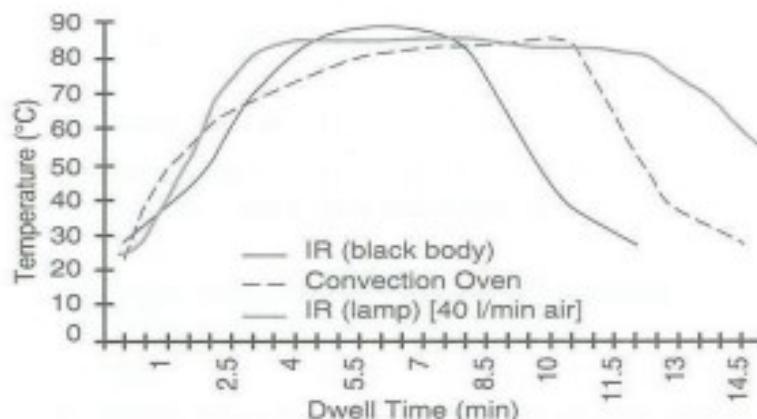

Micromax™ Q95IR

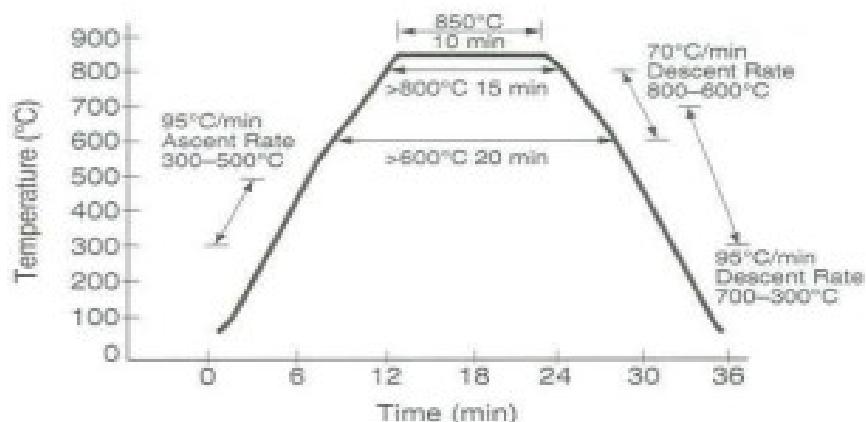
Electronic Inks and Pastes


Properties

- Information in this datasheet shows anticipated typical physical properties for Micromax™ Q42DR and Q95IR based on specific controlled experiments in our labs and are not intended to represent the product specifications, details of which are available upon request.

Figure 1. Diffusion Patterning Reaction


Figure 2. Q42DR Via Diameter Process Window


Micromax™ Q95IR

Electronic Inks and Pastes

Figure 3. Q42DR and Q95IR Diffusion Profiles

Figure 4. 30 minute Furnace Profile

Other system components

- Micromax™ QM21R silver/palladium top layer conductor
- Micromax™ QM14 silver conductor
- Micromax™ QM 34 silver/palladium buried layer via fill conductor
- Micromax™ QM 35 silver/platinum via fill
- Micromax™ QQ550 cadmium-free*, low-temperature resistor encapsulant

Storage and shelf life

Storage : Containers of Micromax™ Q95IR should be stored with their lids tightly

Micromax™ Q95IR

Electronic Inks and Pastes

sealed in a clean, stable environment at room temperature.

Shelf life : Micromax™ Q95IR has a shelf life of six months from the date of shipment and should be stored at normal room temperature.

Safety and handling

For safety and handling information pertaining to this product, read Safety Data Sheet (SDS).

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products.

© 2023 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.